最新消息:

Gaussian Mixture Model简介

数学 王杭州 3488浏览 0评论 [编辑]

Gaussian Mixture Model 假设数据服从 Mixture Gaussian Distribution ,也就是说,数据可以看作是从数个 Gaussian Distribution 中生成出来的。实际上,从中心极限定理可以看出,Gaussian 分布(也叫做正态 (Normal) 分布)这个假设其实是比较合理的,除此之外,Gaussian 分布在计算上也有一些很好的性质,所以,虽然我们可以用不同的分布来随意地构造 XX Mixture Model ,但是还是 GMM 最为流行。另外,Mixture Model 本身其实也是可以变得任意复杂的,通过增加 Model 的个数,我们可以任意地逼近任何连续的概率密分布。

每个 GMM 由 K 个 Gaussian 分布组成,每个 Gaussian 称为一个“Component”,这些 Component 线性加成在一起就组成了 GMM 的概率密度函数:

\displaystyle
\begin{aligned}
p(x) & = \sum_{k=1}^K p(k)p(x|k) \\
     & = \sum_{k=1}^K \pi_k \mathcal{N}(x|\mu_k, \Sigma_k)
\end{aligned}

根据上面的式子,如果我们要从 GMM 的分布中随机地取一个点的话,实际上可以分为两步:首先随机地在这 K 个 Component 之中选一个,每个 Component 被选中的概率实际上就是它的系数 \pi_k ,选中了 Component 之后,再单独地考虑从这个 Component 的分布中选取一个点就可以了──这里已经回到了普通的 Gaussian 分布,转化为了已知的问题。

那么如何用 GMM 来做 clustering 呢?其实很简单,现在我们有了数据,假定它们是由 GMM 生成出来的,那么我们只要根据数据推出 GMM 的概率分布来就可以了,然后 GMM 的 K 个 Component 实际上就对应了 K 个 cluster 了。根据数据来推算概率密度通常被称作 density estimation ,特别地,当我们在已知(或假定)了概率密度函数的形式,而要估计其中的参数的过程被称作“参数估计”。

现在假设我们有 N 个数据点,并假设它们服从某个分布(记作 p(x) ),现在要确定里面的一些参数的值,例如,在 GMM 中,我们就需要确定 \pi_k\mu_k 和 \Sigma_k 这些参数。 我们的想法是,找到这样一组参数,它所确定的概率分布生成这些给定的数据点的概率最大,而这个概率实际上就等于 \prod_{i=1}^N p(x_i) ,我们把这个乘积称作似然函数 (Likelihood Function)。通常单个点的概率都很小,许多很小的数字相乘起来在计算机里很容易造成浮点数下溢,因此我们通常会对其取对数,把乘积变成加和 \sum_{i=1}^N \log p(x_i),得到 log-likelihood function 。接下来我们只要将这个函数最大化(通常的做法是求导并令导数等于零,然后解方程),亦即找到这样一组参数值,它让似然函数取得最大值,我们就认为这是最合适的参数,这样就完成了参数估计的过程。

下面让我们来看一看 GMM 的 log-likelihood function :

\displaystyle
\sum_{i=1}^N \log \left\{\sum_{k=1}^K \pi_k \mathcal{N}(x_i|\mu_k, \Sigma_k)\right\}

由于在对数函数里面又有加和,我们没法直接用求导解方程的办法直接求得最大值。为了解决这个问题,我们采取之前从 GMM 中随机选点的办法:分成两步,实际上也就类似于 K-means 的两步。

  1. 估计数据由每个 Component 生成的概率(并不是每个 Component 被选中的概率):对于每个数据 x_i 来说,它由第 k 个 Component 生成的概率为
    \displaystyle
    \gamma(i, k) = \frac{\pi_k \mathcal{N}(x_i|\mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j\mathcal{N}(x_i|\mu_j, \Sigma_j)}
    

    由于式子里的 \mu_k 和 \Sigma_k 也是需要我们估计的值,我们采用迭代法,在计算 \gamma(i, k) 的时候我们假定 \mu_k 和 \Sigma_k 均已知,我们将取上一次迭代所得的值(或者初始值)。

  2. 估计每个 Component 的参数:现在我们假设上一步中得到的 \gamma(i, k) 就是正确的“数据 x_i由 Component k 生成的概率”,亦可以当做该 Component 在生成这个数据上所做的贡献,或者说,我们可以看作 x_i 这个值其中有 \gamma(i, k)x_i 这部分是由 Component k 所生成的。集中考虑所有的数据点,现在实际上可以看作 Component 生成了 \gamma(1, k)x_1, \ldots, \gamma(N, k)x_N 这些点。由于每个 Component 都是一个标准的 Gaussian 分布,可以很容易分布求出最大似然所对应的参数值:
    \displaystyle
    \begin{aligned}
    \mu_k & = \frac{1}{N_k}\sum_{i=1}^N\gamma(i, k)x_i \\
    \Sigma_k & = \frac{1}{N_k}\sum_{i=1}^N\gamma(i,
    k)(x_i-\mu_k)(x_i-\mu_k)^T
    \end{aligned}
    

    其中 N_k = \sum_{i=1}^N \gamma(i, k) ,并且 \pi_k 也顺理成章地可以估计为 N_k/N 。

  3. 重复迭代前面两步,直到似然函数的值收敛为止。

节选自 漫谈 Clustering (3): Gaussian Mixture Model

转载请注明:王杭州的个人网页 » Gaussian Mixture Model简介

发表我的评论
取消评论

表情

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址